
Docker Workload Onboarding
How to use docker containers with Bacalhau

Bacalhau executes jobs by running them within containers. Bacalhau employs a syntax

closely resembling Docker, allowing you to utilize the same containers. The key

distinction lies in how input and output data are transmitted to the container via IPFS,

enabling scalability on a global level.

This section describes how to migrate a workload based on a Docker container into a

format that will work with the Bacalhau client.

You can check out this example tutorial on how to work with custom containers in Bacalhau

to see how we used all these steps together.

Here are few things to note before getting started:

1. Container Registry: Ensure that the container is published to a public container

registry that is accessible from the Bacalhau network.

2. Architecture Compatibility: Bacalhau supports only images that match the host

node's architecture. Typically, most nodes run on linux/amd64 , so containers in

arm64 format are not able to run.

3. Input Flags: The --input ipfs://... flag supports only directories and does not

support CID subpaths. The --input https://... flag supports only single files and

does not support URL directories. The --input s3://... flag supports S3 keys and

prefixes. For example, s3://bucket/logs-2023-04* includes all logs for April 2023.

You can check to see a list of example public containers used by the Bacalhau team

Docker Workloads

Requirements

Bacalhau Docs v.1.4.0 Install

https://docs.bacalhau.org/setting-up/workload-onboarding/container/index-1
https://github.com/orgs/bacalhau-project/packages?repo_name=examples
https://docs.bacalhau.org/
https://docs.bacalhau.org/getting-started/installation

Note: Only about a third of examples have their containers here. The rest are under random

docker hub registries.

To help provide a safe, secure network for all users, we add the following runtime

restrictions:

1. Limited Ingress/Egress Networking:

All ingress/egress networking is limited as described in the networking documentation.

You won't be able to pull data/code/weights/ etc. from an external source.

2. Data Passing with Docker Volumes:

A job includes the concept of input and output volumes, and the Docker executor

implements support for these. This means you can specify your CIDs, URLs, and/or S3

objects as input paths and also write results to an output volume. This can be seen

in the following example:

The above example demonstrates an input volume flag

-i s3://mybucket/logs-2023-04* , which mounts all S3 objects in bucket mybucket

with logs-2023-04 prefix within the docker container at location /input (root).

Output volumes are mounted to the Docker container at the location specified. In the

example above, any content written to /output_folder will be made available within

the apples folder in the job results CID.

Once the job has run on the executor, the contents of stdout and stderr will be

added to any named output volumes the job has used (in this case apples), and all

those entities will be packaged into the results folder which is then published to a

remote location by the publisher.

bacalhau docker run \
 -i s3://mybucket/logs-2023-04*:/input \
 -o apples:/output_folder \
 ubuntu \
 bash -c 'ls /input > /output_folder/file.txt'

Runtime Restrictions

Onboarding Your Workload

https://docs.bacalhau.org/setting-up/networking-instructions

If you need to pass data into your container you will do this through a Docker volume.

You'll need to modify your code to read from a local directory.

We make the assumption that you are reading from a directory called /inputs , which is

set as the default.

You can specify which directory the data is written to with the --input CLI flag.

If you need to return data from your container you will do this through a Docker volume.

You'll need to modify your code to write to a local directory.

We make the assumption that you are writing to a directory called /outputs , which is

set as the default.

You can specify which directory the data is written to with the --output-volumes CLI flag.

At this step, you create (or update) a Docker image that Bacalhau will use to perform

your task. You build your image from your code and dependencies, then push it to a

public registry so that Bacalhau can access it. This is necessary for other Bacalhau

nodes to run your container and execute the given task.

Most Bacalhau nodes are of an x86_64 architecture, therefore containers should be built

for x86_64 systems.

For example:

$ export IMAGE=myuser/myimage:latest
$ docker build -t ${IMAGE} .
$ docker image push ${IMAGE}

Step 1 - Read Data From Your Directory

Step 2 - Write Data to the Your Directory

Step 3 - Build and Push Your Image To a Registry

Step 4 - Test Your Container

https://docs.bacalhau.org/references/cli-reference/all-flags#docker-run
https://docs.bacalhau.org/references/cli-reference/all-flags#docker-run
https://docs.bacalhau.org/references/cli-reference/all-flags#docker-run
https://docs.bacalhau.org/references/cli-reference/all-flags#docker-run
https://docs.bacalhau.org/references/cli-reference/all-flags#docker-run
https://docs.bacalhau.org/references/cli-reference/all-flags#docker-run
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/push/

To test your docker image locally, you'll need to execute the following command,

changing the environment variables as necessary:

Let's see what each command will be used for:

Bacalhau will use the default ENTRYPOINT if your image contains one. If you need to specify

another entrypoint, use the --entrypoint flag to bacalhau docker run .

For example:

The result of the commands' execution is shown below:

$ export LOCAL_INPUT_DIR=$PWD
$ export LOCAL_OUTPUT_DIR=$PWD
$ export CMD=(sh -c 'ls /inputs; echo do something useful > /outputs/stdout')
$ docker run --rm \
 -v ${LOCAL_INPUT_DIR}:/inputs \
 -v ${LOCAL_OUTPUT_DIR}:/outputs \
 ${IMAGE} \
 ${CMD}

$ export LOCAL_INPUT_DIR=$PWD
Exports the current working directory of the host system to the LOCAL_INPUT_DI

$ export LOCAL_OUTPUT_DIR=$PWD
Exports the current working directory of the host system to the LOCAL_OUTPUT_D

$ export CMD=(sh -c 'ls /inputs; echo do something useful > /outputs/stdout')
Creates an array of commands CMD that will be executed inside the container. I

$ docker run ... ${IMAGE} ${CMD}
Launches a Docker container using the specified variables and commands. It bin

$ export LOCAL_INPUT_DIR=$PWD
$ export LOCAL_OUTPUT_DIR=$PWD
$ export CMD=(sh -c 'ls /inputs; echo "do something useful" > /outputs/stdout'
$ export IMAGE=ubuntu
$ docker run --rm \
 -v ${LOCAL_INPUT_DIR}:/inputs \
 -v ${LOCAL_OUTPUT_DIR}:/outputs \
 ${IMAGE} \
 ${CMD}
$ cat stdout

https://docs.docker.com/engine/reference/builder/#entrypoint

Data is identified by its content identifier (CID) and can be accessed by anyone who

knows the CID. You can use either of these methods to upload your data:

Copy data from a URL to public storage

Pin Data to public storage

Copy Data from S3 Bucket to public storage

You can mount your data anywhere on your machine, and Bacalhau will be able to run

against that data

To launch your workload in a Docker container, using the specified image and working

with input data specified via IPFS CID, run the following command:

To check the status of your job, run the following command:

To get more information on your job,run:

To download your job, run:

For example, running:

do something useful

$ bacalhau docker run --input ipfs://${CID} ${IMAGE} ${CMD}

$ bacalhau job list --id-filter JOB_ID

$ bacalhau job describe JOB_ID

$ bacalhau job get JOB_ID

Step 5 - Upload the Input Data

Step 6 - Run the Workload on Bacalhau

https://docs.bacalhau.org/setting-up/data-ingestion/from-url
https://docs.bacalhau.org/setting-up/data-ingestion/pin
https://docs.bacalhau.org/setting-up/data-ingestion/s3

outputs:

The --input flag does not support CID subpaths for ipfs:// content.

Alternatively, you can run your workload with a publicly accessible http(s) URL, which

will download the data temporarily into your public storage:

The --input flag does not support URL directories.

If you run into this compute error while running your docker image

JOB_ID=$(bacalhau docker run ubuntu echo hello | grep 'Job ID:' | sed 's/.*Job
echo "The job ID is: $JOB_ID"
bacalhau job list --id-filter $JOB_ID
sleep 5

bacalhau job list --id-filter $JOB_ID
bacalhau get $JOB_ID

ls shards

CREATED ID JOB STATE VERIFIED PUBLISHED
 10:26:00 24440f0d Docker ubuntu echo h... Verifying
 CREATED ID JOB STATE VERIFIED PUBLISHED
 10:26:00 24440f0d Docker ubuntu echo h... Published /ipfs/bafyb
11:26:09.107 | INF bacalhau/get.go:67 > Fetching results of job '24440f0d-3c06
11:26:10.528 | INF ipfs/downloader.go:115 > Found 1 result shards, downloading
11:26:13.144 | INF ipfs/downloader.go:195 > Combining shard from output volume
job-24440f0d-3c06-46af-9adf-cb524aa43961-shard-0-host-QmYgxZiySj3MRkwLSL4X2MF5

$ export URL=https://download.geofabrik.de/antarctica-latest.osm.pbf
$ bacalhau docker run --input ${URL} ${IMAGE} ${CMD}

$ bacalhau job list

$ bacalhau job get JOB_ID

Troubleshooting

This can often be resolved by re-tagging your docker image

If you have questions or need support or guidance, please reach out to the Bacalhau

team via Slack (#general channel)

Previous

Container

Next

WebAssembly (WASM) Workloads

Last updated 7 days ago

Creating job for submission ... done ✅
Finding node(s) for the job ... done ✅
Node accepted the job ... done ✅
Error while executing the job.

Support

https://bacalhauproject.slack.com/ssb/redirect
https://bacalhauproject.slack.com/ssb/redirect
https://bacalhauproject.slack.com/ssb/redirect
https://docs.bacalhau.org/setting-up/workload-onboarding/container
https://docs.bacalhau.org/setting-up/workload-onboarding/container/wasm-workload-onboarding

